If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2-20t+1=0
a = 4; b = -20; c = +1;
Δ = b2-4ac
Δ = -202-4·4·1
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{6}}{2*4}=\frac{20-8\sqrt{6}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{6}}{2*4}=\frac{20+8\sqrt{6}}{8} $
| -8a-19=-83 | | 2(4x+1)-4=3x+8 | | 4x+236=-232-9x | | A(x)=8x^2=200 | | 42=9h-3 | | 28-7d=-35 | | -100=-4(5+5m) | | -4x-1=-14 | | 3x-5=95 | | 3=c/12 | | x^2-4x-57=0 | | 9r=8=28 | | -2x+5(-7x-10)=172 | | 11x-6=7x-4 | | 11/7x=1080 | | 62+3n-6=180 | | 62+3n-6=1800 | | -x-184=76+4x | | k=15+9 | | 9+3(2x-5)=-6 | | t/7+32=28 | | 49·2=3a-10a | | 5(2x+12)+21=2x+41 | | 13,4+5x=x-16+x | | 2f+12=34 | | x+2/10=1/5+x-8/8 | | -7x^2+7=70 | | 0.6(y-2)=-20 | | 10x+4=1x-5 | | 3e+8=26 | | 4p2−4p−15=0 | | 5x^2-11x+4=0. |